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Vortex matter in a hybrid superconducting/ferromagnetic nanostructure
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By using a gauge transformation of the vector potential that accounts for the superconducting/vacuum
boundary condition, we solve the linear and nonlinear Ginzburg-Landau equations to calculate the phase
diagram of the hybrid superconducting/ferromagnetic nanostructure formed by a superconducting microsquare
with a magnetic disk on top. Close to the normal/superconducting phase boundary [T,.(H)] we observe that the
competition between the applied magnetic field and the inhomogeneous field of the disk strongly affects the

vortex nucleation. As a consequence, different symmetry constraints are imposed on the vortex patterns at
T.(H), leading to the exclusion of some vorticity values allowed in the no-dot case. The dot also influences the
evolution with temperature of the vortex states deep in the superconducting phase, giving rise to instability
processes that differ from those previously found in individual microsuperconductors and that may involve the
spontaneous generation of additional vortices. Besides, the dot also forces the vortex matter in this hybrid

nanostructure to behave similarly to the case of an individual microdisk in some regions of the phase diagram.
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I. INTRODUCTION

The behavior of a superconductor in the vicinity of a fer-
romagnet is one of the aspects of the physics of supercon-
ductivity that has been intensively studied during the recent
years.! When both materials are in contact, the superconduct-
ing and magnetic order parameters will be coupled via the
exchange in electrons (the so-called proximity effect') giving
rise to different physical phenomena as, for instance, spin-
switch superconductivity.> This direct coupling can be sup-
pressed by separating the superconductor from the ferromag-
net, and then, the interaction between both materials is
reduced to the electromagnetic effect of the inhomogeneous
field of the dot on the superconducting condensate.! How-
ever, even in that case the influence of the ferromagnet may
significantly affect the behavior of a superconducting mate-
rial. In particular, the compensation of the stray field of the
ferromagnet with an external homogeneous field may induce
the appearance of local domains in the superconductor where
the total magnetic field is negligible and, thus, where the
nucleation of superconductivity is favored.> This can lead,
among other effects, to nonconventional normal/
superconducting phase boundaries [7T.(H)] (Refs. 4 and 5),
magnetic-field-induced superconductivity,® or field polarity-
dependent superconductivity.’

The interest for the interaction between superconductivity
and magnetism has been also extended to hybrid
superconducting/ferromagnetic (S/F) nanosystems. Previous
works on individual microsuperconductors have shown that
the superconducting critical parameters (critical temperature
T., field H,,, and current J,.) can be considerably modified
through nanostructuring.®” For instance, when the size of a
thin superconductor becomes of the order of the coherence
length, &(7), its normal/superconducting phase boundary
shows a cusplike behavior superimposed onto a linear back-
ground, each of the cusps corresponding to a change in the
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fluxoid quantum number (also called vorticity, L) by one.®’
Different studies performed within the framework of the phe-
nomenological Ginzburg-Landau (GL) theory have also
demonstrated that the confinement of the superconducting
condensate may induce some peculiar changes in the vortex
matter of these systems. In particular, it has been found
that close to T.(H), where the GL theory may be applied
in its linearized form, giant vortex and vortex-antivortex
pairs can be spontaneously generated in superconducting
microdisks!®'? and, respectively, mesoscopic regular poly-
gons (as triangles'>!> and squares'>'%) to comply with the
symmetry of the sample. Deeper in the superconducting
phase the nonlinear effects associated with high order
terms in the GL free energy become important, and these
symmetry-induced vortex states undergo symmetry-breaking
and symmetry-switching transitions that lead to a progressive
recovery of the Abrikosov vortex lattice.!?!1>19-26

These properties of individual superconducting micro-
structures can be also significantly modified by the inhomo-
geneous distribution of magnetic field produced by a ferro-
magnet on top of the superconductor. A good example here is
the profound influence that a magnetic dot may have on the
onset of superconductivity, and vortex matter in loops and
disks, which may lead to asymmetric phase boundaries and
to maximum critical temperatures for finite values of the
applied magnetic field which are antiparallel to the magneti-
zation of the dot.”’ Besides, a ferromagnet on top of a super-
conducting disk can also generate vortex-antivortex states
that are competing with the symmetry-induced vortex-
antivortex molecules found in mesoscopic regular
polygons.?®2 Other effects that have been observed in these
heterostructures are a phase shift in superconducting loops
with magnetic dots that can be applied for the design of
flux-based superconducting qubits,3° and an enhanced stabil-
ity of particular vortex states along the phase boundary.!

Recently, we have reported that the behavior of the hybrid
nanosystem formed by a mesoscopic superconducting square
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with a ferromagnetic dot on top is strongly different, at both
T.(H) and inside the superconducting phase, from that of the
individual microsquare. In particular, we have observed that
along T,.(H) the magnetic dot may induce an expansion of
the symmetry consistent vortex-antivortex patterns and the
simultaneous nucleation of several vortices (multiquanta vor-
tex entries).’? As a consequence of this last effect, the usual
increment of the vorticity by one is broken close to the
normal/superconducting transition although it is progres-
sively restored deeper in the superconducting state. The
mechanisms of this recovery of L values are not only the
conventional flux expulsion already observed in individual
microsuperconductors but also the spontaneous generation of
additional vortices with decreasing temperature.** These dif-
ferent properties have an intrinsic interest from a fundamen-
tal point of view but, besides, they also open different paths
for the control and manipulation of the flux quantization that
could be used to develop new superconductor-based nanode-
vices.

However, for the better understanding of the physical
mechanisms of these effects, as well as for the motivation of
their experimental study and potential applications, it is nec-
essary to construct a normal-superconducting phase diagram
of this hybrid nanostructure analogous to those already cal-
culated for individual mesoscopic superconductors.!>*2>
With that purpose, in this paper we will first use the linear-
ized Ginzburg-Landau equation (LGL) to determine the
T.(H) phase boundary in a broad range of magnetic fields.
This will allow us to identify the different vortex nucleation
mechanisms that, depending on the compensation between
the external and the stray magnetic fields, may vary from the
conventional edge nucleation already observed in individual
superconducting micropolygons to a center/ring nucleation
and, eventually, a combination of both (complex edge nucle-
ation). Then, by means of the full nonlinear GL functional,
we will also study the stability of the nucleated vortex pat-
terns. For that, we will calculate the normal-superconducting
phase diagram of the structure down to temperatures well
inside the superconducting phase. Our findings show that the
stray field of the dot also affects deeply the evolution with
temperature of the nucleated order parameter, giving rise to
instability mechanisms that differ from those of the indi-
vidual microstructure and that may lead to highly nonsym-
metric vortex states. In addition, the geometry of the dot also
forces the vortex matter in this hybrid S/F nanostructure to
behave similarly to the case of an individual microdisk for
relatively large vorticity values.

II. MODEL

Within the framework of the Ginzburg-Landau phenom-
enological theory, the free energy of a superconductor can be
described in terms of the superconducting order parameter,
P, as3*

(h - H)*

8 > )

G=G, +f {\II*LA\IM a| V| + §|\If|4+

where i:ﬁz(—iVé—%’:/{)z/Zm* is the linearized GL operator,
¢, is the magnetic-flux quantum, m* is the effective mass of

PHYSICAL REVIEW B 79, 104520 (2009)

45-Fiel&1)xs
IR e (Do)
; /1 154
> = r/a
/ z d4a 02 oo 02 o
[ . s,
€ a 1
-30

FIG. 1. (Color online) Schematic illustration of the supercon-
ducting square with the magnetic dot on top together with the field
profile corresponding to a dot with My, =18¢y, R=0.4a, thickness
[=0.033a, and the gap z=-0.0025a.

the Cooper pairs, « and S are the GL parameters, h and H
are, respectively, the local and applied magnetic fields, G,, is

the free energy of the normal state, and A is the vector po-
tential. In presence of a disk-shaped dot magnetized parallel
to the z direction and of a homogeneous external field ap-
plied perpendicularly to the sample, the latter is cylindrically
symmetric and can be written as>

k2
o = ) [(1—5)1«1«)—15(@]
Atf?tal(r)=_+4Mdm\/if dzy )
2 rJy

k

2)

with A,=A_=0. In the above equation K and E are, respec-
tively, elliptic integrals of the first and second kinds while R,
I, and M 4, hold for, respectively, the radius, the height, and
the magnetization of the dot. Also in Eq. (2), kK>=4Rr/[(R
+7)?+(z—z,)*] is a z-dependent dimensionless variable that,
implicitly, may be used to take into account the presence of a
substrate between the superconductor and the dot to avoid
proximity effects. In the calculations presented in this work
we have used My,=18¢y, R=0.4a, [=0.033a, and z=
—0.0025a (here a is the length of the square), values that are
comparable with the parameters of the dots used in previous
experimental studies.”’” The corresponding field profile is
presented in Fig. 1, together with a schematic drawing of the
superconducting square with the magnetic dot on top.

In what follows we will restrict our study to a mesoscopic
square with @ much smaller than the magnetic penetration
depth, \(7), and thickness d much smaller than both &)
=&(0)/(1-T/T,y) [here &©0) is the GL coherence length am-
plitude and T, is the critical temperature at zero field] and
N(T). In this case, it is possible to neglect in Eq. (1) the
variation in the order parameter across d (Ref. 12), and the
modification of the magnetic field induced by screening and
vortex currents.!32%25 Then, the GL functional can be solved
in two dimensions and Eq. (1) is reduced to

G:Gn+”qf*£qf+a|\1r|2+§|qf|4 . (3)

Despite of this simplification, the minimization of the GL
functional is still a complex problem since the solutions of
Eq. (3) are to be found while taking into account the
superconducting/vacuum boundary condition given by3*
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(V 2 _,)

_.__A \I,|n=0’ (4)
)

where n holds for the normal to the sample boundary line.
However, close to the normal-superconducting phase bound-
ary, the amplitude of the superconducting order parameter
may be considered small and the fourth power on |W| can be
neglected in Eq. (3). Subsequently, to study the nucleation of
superconductivity, it suffices to solve the LGL equation,

LW =¢W. With that purpose a procedure has been developed
based on a gauge transformation of the vector potential that,
for both individual microsuperconductors'>!® and hybrid
S/F mnanostructures with cylindrical symmetry of the
ferromagnet,'>3233-36 Jeads to A, =0 along the sample bound-
ary line'>1¢ (see the Appendix for a brief description). Then,
Eq. (1) is transformed into the conventional Neumann
boundary condition, V¥|,=0, and the LGL equation may be
solved by using an analytic basis set. In a square, as a con-
sequence of its fourfold symmetry, the eigenvalues of the
LGL equation, ¢;, can be divided into four different irreduc-
ible representations (irreps) that we denote as A, B, E+, and
E—. They correspond to solutions with, respectively, no vor-
tex (L=0), a giant vortex (L=+2), a vortex (L=+1), and an
antivortex (L=-1) in the center of the sample that will be
surrounded by a number of vortices (multiple of four) that
depends on the applied magnetic field.!>!6

Deep in the superconducting phase, however, |¥| cannot
be any longer considered as small and the nonlinear term in
Eq. (3) has to be taken into account. Nevertheless the solu-
tions of the LGL equation can still be used to describe the
symmetry effects via an expansion of the superconducting
order parameter, ‘I’=E’1V c;¢; (here c; are the complex coeffi-
cients of the expansion, and N is the dimension of the basis
set) since these functions implicitly include the geometry
constraints imposed by the boundary condition. After this ¥
expansion Eq. (3) is transformed into

G-G,=2, (a+ €)cic;+ EE Aflereree, (5)
i 28,

where g; is the eigenvalue corresponding to the eigenfunc-
tion of the LGL equation ¢;, S is the superconductor’s sur-
face area, and Affjl= [ &; &; bi¢p are parameters that depend on
the geometry of the sample but not on its size.

Thus, to solve the nonlinear Ginzburg-Landau functional,
it is only necessary to find the set of complex numbers c; that
minimize Eq. (5). For that, we have used simulated anneal-
ing method incorporating a Mersenne twister algorithm®’ as
random number generator. Indeed, it is only possible to deal
with a finite number of functions in the order-parameter ex-
pansion. Therefore, we have chosen a basis set formed by 24
functions (six per irrep) after checking that larger basis sets
do not lead to a different result in the considered range of
magnetic fields and temperatures. Prior minimization, we
renormalize the coefficients c¢; through ¢;— a\—a,/Bc/ and,
besides, we scale the energy in units of S,/ B (here «; is the
lowest eigenvalue of the LGL equation). As a result of these
transformations, the right-hand term of Eq. (5) becomes
independent [and, thus, A(T) independent], which means that

PHYSICAL REVIEW B 79, 104520 (2009)

300 A —__ _nodotcase | G
B —withdot, M, =18®,,R=0.4a F
—~ 200} .
2
W
v 100f §
0' U TP | :‘“" """ :E PR T 1 -~
-90 -60 -30 0 30 60 90

D/ D,

FIG. 2. (Color online) T.(H) phase boundary of the studied
hybrid S/F nanostructure (red). Compared with the results for the
no-dot case (black), it presents a clear asymmetric behavior with
respect to the external field that is consequence of the compensation
between the latter and the stray field of the dot. In particular, as
shown in the inset, this compensation leads to a minimum 7, of the
structure at a nonzero (and negative) field value. The letters divide
the curve in six different parts accordingly with the symmetry of the
nucleated order parameter. The green-dashed line is an extrapola-
tion of the T.(H) behavior at high negative fields (where the stray
field of the dot may be considered as a small perturbation) that
illustrates that the compensation between both fields is maximum in
the CD part.

the obtained order parameter is independent on the « value.
Therefore, by using Eq. (5) it is possible to analyze the evo-
lution of the vortex states in thin structures of both type-I and
type-II superconductors. Furthermore, after the renormaliza-
tion of both the c¢; coefficients and the energy, the right-hand
side of Eq. (5) only depends (besides Af.‘jl) on the ratios
(S/E+¢€)/(S/E+¢). Therefore, the GL energy and, thus,
the emerging phase diagram will be dependent only on
S/E(T) and ¢/ ¢, (here p=HS is the applied magnetic flux)
so that they can be applied to any sample with a given S and

&T).

III. LINEAR RESULTS

A. Phase boundary

The T.(H)-phase boundary of the hybrid S/F structure
object of our study is presented in Fig. 2, together with the
results for the no-dot case. Both curves are obtained from the
LGL equation as the minimum (at each ¢ value) of the low-
est Landau levels (LLL) of the four different irreps, which
describe the nucleation of superconductivity via € =—«
=/2/2m*&(T). Thus, the field dependence of T, is taken
into account in the figure through &T)=£&(0)/[1
-T.($)/T,). As it may be seen, the phase boundary in ab-
sence of the magnetic dot is perfectly symmetric and it only
depends on the applied magnetic field. Instead, analogously
to the case of a magnetic dipole on top of a cylindrical su-
perconducting sample, the T.(H) curve of the hybrid struc-
ture depends on the competition between the applied mag-
netic field and the stray field of the dot. As a consequence, a
clear asymmetric behavior with respect to the polarity of the
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applied field is seen. In particular, as shown in the inset, the
phase boundary shifts along both the 7 and the ¢ axis, lead-
ing to a minimum 7, of the structure at a nonzero (and nega-
tive) field value that increases (in absolute value) with the
magnetization of the dot. This fact strongly suggests the ex-
istence of a compensation effect between the external field
and the stray field of the dot that has been already observed
in loops and disks.?” Furthermore, as it is now well
established,'>!¢ the phase boundary of the no-dot case is
consequence of a well defined sequence of crossings between
the LLL of the different irreps, A—E+ —-B—E—-—A...,
each of them leading to an increase in the vorticity by one.
Instead, in a sample with a magnetic dot, some irreps are
energetically favored with respect to the others so that some
vorticity values are forbidden at the boundary. In the case of
the magnetic disk studied in this work these vorticity values
are L=8, 4,2, -1, -2, -3, -6, =7, =8, =9, —11, and —13.32
However, as we will discuss in Sec. IV, these vorticity values
can be recovered by lowering the temperature well below the
transition.??

In Fig. 2 we also divide the T,.(H) curve for the magnetic
dot case in six different parts (namely, AB, BC, CD, DE, EF,
and FG), accordingly with the symmetry of the nucleated
order parameter that we will discuss with more detail in the
next subsection. For AB and FG parts the applied magnetic
field is much higher than the stray field of the dot, and the
effect of the latter can be neglected. Thus, the curve in these
parts overlaps with the one corresponding to the no-dot case,
and the order parameter nucleates likewise in an individual
microsquare (i.e., with fourfold symmetry and by increasing
the vorticity one by one). In what follows we will denote
these parts of the phase boundary as conventional nucleation
regimes. In contrast, along the CD part, the stray field of the
dot is compensated by the external field. This is first illus-
trated by the fact that in this region the phase boundary falls
well below the green-dashed line that extrapolates the behav-
ior of the T.(H) boundary in the conventional nucleation
regime observed at higher magnetic fields. In fact, the maxi-
mum critical temperature of the structure is also achieved in
this region (at approximately ¢p=—13¢,). Besides, as we dis-
cuss below, the compensation between the stray and the ap-
plied magnetic fields leads to the appearance of a supercon-
ducting disk/ring in the region of the microsquare that falls
just below the dot. This order-parameter distribution favors
the simultaneous entry in the sample of several vortices at
some magnetic-field values. We have observed that these
multiquanta transitions may lead to changes in the vorticity
by +4, +5, and +8, and that they are associated with the
long-period oscillations that the phase boundary presents in
this region. Due to these particular features, we will denote
this part of the T.(H) curve as center- or ring-nucleation
regime. Finally, BC, DE, and FE parts are intermediate re-
gimes where the nucleated order parameter presents a mixed
symmetry in between the squared and cylindrical geometries
of, respectively, the sample and the dot. Therefore, in what
follows we will call them complex nucleation regimes. We
have found that multiquanta transitions are still possible in
these regions. In particular, we have observed jumps in L in
BC (by +2 and +4) and DE (by +2) but not in EF.
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FIG. 3. (Color online) Evolution of the nucleated order param-
eter along the T,(H) phase boundary in the region —24.75¢y=< ¢
=-6.5¢,. The higher values of the Cooper pair density are shown
in red and the dashed circumference represents the region below the
dot. Due to the compensation between the stray field of the dot and
the applied magnetic field, in panels (a)-(d) the sample presents a
well developed superconducting disk area at the center surrounded
by four topologically equivalent corners with lower amplitude of
the superconducting order parameter. These two parts of the sample
present different mechanisms for the vortex nucleation: one by one
inside the superconducting disk (as in an individual superconduct-
ing microstructure) and 4n by 4n in the corners (n in each corner).
These mechanisms occur independently (leading to changes in the
vorticity by 1 or by 4n) or simultaneously (with a jump in the
vorticity by 4n+1). When the compensation ceases, the usual incre-
ment of the vorticity by 1 is progressively recovered although the
nucleated order parameter shows a mixed symmetry between the
disk and square geometries [panels (e)—(1)].

B. Vortex patterns

To illustrate the origin of the different properties of the
normal-superconducting phase boundary of a microsquare
with a magnetic disk on top described in the previous sub-
section, in Fig. 3 we present the evolution with the applied
magnetic field of the squared amplitude of the superconduct-
ing order parameter (|W|?) along T.(H) together with the
corresponding vorticity value and irrep that determines the
solution. For simplicity, we have restricted ourselves to mag-
netic fields in the range —24.75¢)= ¢=6.5¢,, where most
of the different effects associated with the nucleation of su-
perconductivity can be observed. The higher values of the
Cooper pair density are presented in red and the dashed cir-
cumference represents the region below the dot. Indeed, if
we define the vortices/antivortices as flux lines parallel/
antiparallel to the magnetization of the ferromagnet, one may
expect that they prefer to stay inside/outside the circumfer-
ence. However, this general rule has to be combined with the
peculiarities of the topology of the order-parameter distribu-
tion. In particular, in the center- or ring-nucleation regime
[panels (a)-(d)] the sample presents a highly inhomogeneous
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distribution of the Cooper pair density as a consequence of
the compensation between the stray and applied magnetic
fields. This results in the appearance of a well developed
superconducting disk area in the center of the sample sur-
rounded by four corners with a lower amplitude of the order
parameter. Due to their different symmetry, these two parts
of the sample also present a different mechanism for the
vortex nucleation: while in the superconducting disk the vor-
tices nucleate one by one as in an individual superconducting
microstructure,®” in the four topologically equivalent corners
4n, vortices have to be simultaneously nucleated (n in each
corner). Besides, the generation of vortices in these two re-
gions of the sample may also happen independently. This
explains why in the center- or ring-nucleation regime the
vorticity can change by 4n [as in panels (d) to (c), with the
simultaneous nucleation of one antivortex in each corner of
the sample], by one [as in panels (c) to (b), with the nucle-
ation of an antivortex in the center of the superconducting
disk], or by five [as in panels (b) to (a), where the nucleation
of vortices in the two regions of the sample occurs simulta-
neously].

As it may be also seen in Fig. 3 [panels (e)—(1)] for ap-
plied magnetic fields above, approximately, —7.75 ¢, the vor-
ticity of the sample changes to positive values and it enters
the complex nucleation regime. In contrast to the center- or
ring-nucleation regime but analogously to the case of the
conventional edge-nucleation characteristic of individual mi-
cropolygons, in this magnetic-field region the corners of the
square have a high Cooper pair density. However, the nucle-
ated order parameter still has a mixed symmetry between the
squared and cylindrical geometries. Panels (e)—(1) illustrate
that this competition between symmetries makes particularly
stable vortex patterns with a two-shell configuration, with 4n
vortices in an outer shell and a single vortex, antivortex, or
giant vortex (with, respectively, vorticity 1, —1, or 2) at the
center of the square. This multishell structure, similar to the
one observed in the superconducting phase of mesoscopic
disks,3*? induces multiquanta vortex entries along the phase
boundary since, for instance, the vortex states with L=4 and
L=8 cannot be arranged in this configuration. Subsequently,
these vorticities are absent at T.(H). The value L=2 is also
forbidden at the boundary, probably due to the fact that the
presence of an isolated giant vortex is not favored by the
large peaks that the profile of the stray field has at the edges
of the magnetic disk. These peaks will tend to break up the
giant vortex into two single vortices that cannot be sym-
metrically arranged in a two-shell structure.

IV. NONLINEAR RESULTS
A. Phase diagram

In physical systems, linearity and symmetry are often di-
rectly related. Thus, the symmetry-induced properties ob-
served close to the T.(H) boundary of mesoscopic supercon-
ductors are expected to disappear deep in the
superconducting phase, where the nonlinear term in the GL-
free-energy expansion becomes important. For instance, in
the case of the hybrid S/F structure studied here, we have
recently found that the values of the vorticity forbidden at
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the onset of superconductivity can be recovered with lower-
ing of the temperature. However, how do the vortex patterns
evolve with decreasing temperature? To answer this ques-
tion, we first present in Fig. 4(1) the normal-superconducting
phase diagram, obtained by minimizing Eq. (5), for the struc-
ture schematically shown in Fig. 1. The field interval (x axis)
has been chosen to cover the range of the phase boundary
where the order-parameter distributions shown in Fig. 3
nucleate. Therefore, we have identified the region of the
T.(H) curve (thick solid line) corresponding to each of these
nucleated vortex states by the same lower case letter than in
that figure. The evolution of these vortex patterns in the su-
perconducting phase has been studied down to temperatures
as low as S/&(T1)=220 (y axis). As in individual
nanosuperconductors,'%!8 we have observed that with de-
creasing temperature the nucleated order parameter under-
goes symmetry-switching and symmetry-breaking transitions
that are represented in the figure by thin solid lines. As it can
be seen, some of them (tagged with one) have a negative
(positive) slope for L>0 (L <0), an indication that they are
related with transitions that involve the spontaneous nucle-
ation of vortices (antivortices) with decreasing temperature.
The different vortex states have been identified in the phase
diagram as follows: the capital letters from A to V corre-
spond to the configurations found at the lowest studied tem-
perature. So deep in the superconducting phase we observe
that the usual increment of the vorticity by one is restored
and, thus, these letters hold for changes in L by one from —10
to 10. For the vortex patterns obtained at higher temperatures
we use the same letters for the same vorticity values fol-
lowed by a number for each different spatial distribution of
the order parameter (starting from zero for the closest one to
the boundary). So, as it can be seen in the figure, there exist
several vortex states with the same vorticity but with a dif-
ferent configuration, such as A and AQ (L=-10), M1 and M
(L=2), NO and N (L=3), PO and P (L=5), Q0 and Q
(L=6), RO, R1, and R (L=7), S and S1 (L=8), and U, U0,
Ul, and U2 (L=10), which result from one or several
symmetry-breaking transitions. In contrast, the phases F, G,
K, L, and T seem to be more stable, as they do not change
their configuration during the whole temperature lowering
process and they occupy a larger region of the diagram than
the others. This stability can be attributed to their vorticity
values (L=-5, -4, 0, 1, and 9, respectively), which are easy
to arrange following the mixed symmetry of the sample re-
sulting from the interplay of the square and the cylindrical
geometries of, respectively, the square and the dot (see next
subsection).

Figure 4(1) also illustrates that with decreasing tempera-
ture some new phases, such as B (L=-9), C (L=-8), D
(L=-7), E (L=-6), H (L=-3),1(L=-2),J (L=-1), M1 and
M (L=2), O (L=4), and S1 and S (L=8), are introduced into
the system. Their corresponding vorticities are not revealed
at the boundary so that the generation of these vortex states
leads to the recovery of the usual increment of L by one.
However, we have also found that some of these patterns are
unstable and, thus, they can only be observed in a narrow
region of the phase diagram. These configurations have been
grouped in the figure in two transition regions (CDE and
HIJ) characterized by the small energy differences between
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FIG. 4. (Color online) Panel (1) is the normal-superconducting phase diagram of the mesoscopic square with a magnetic dot on top
shown in Fig. 1. The field interval has been chosen to cover the regime where the vortex patterns presented in Fig. 3 nucleate so that in the
T.(H) curve (thick solid line) we have identified the nucleation region of each of these vortex states by using the same lower case letter than
in the corresponding panel of that figure. The thin solid lines are associated with the different symmetry-breaking and symmetry-switching
transitions that the order parameter undergoes in the superconducting phase. Therefore, they separate different vortex patterns that have been
labeled by using upper case letters followed or not by a number, the latter corresponding to those found at the lowest studied temperature.
The configurations with the same letter have the same vorticity, such as A and A0 (L=-10), M1 and M (L=2), NO and N (L=3), PO and P
(L=5), Q0 and Q (L=6), RO, R1, and R (L=7), S and S1 (L=8), and U, U0, U1, and U2 (L=10). Note that the lines tagged with 1 have
a negative (positive) slope for L>0 (L<0) and, thus, they correspond to transitions involving the spontaneous nucleation of vortices
(antivortices) with decreasing temperature. This phenomenon may also happen in the transition regions CDE and HIJ, characterized by a
high instability associated to small energy differences between the different vortex states. A first indication of the origin of this instability is
shown in panel (2), where we present the ¢ dependence of the energy of the first three Landau levels of each irrep involved in the
order-parameter expansion. As it can be seen, these levels are closer in energy to each other in the field regime where both transition regions
appear than in other ¢ intervals. Panels (a)—(t) are the vortex patterns found at S/&(T)=200 in the magnetic-field region covered by the
phase diagram presented in panel (1) [the vortex pattern corresponding to the phase U at S/ £%(T)=200 is separately shown in Fig. 5(d)]. Note
that the usual increment of the vorticity by one is recovered at such a low temperature so that the vortex patterns in (a)—(t) cover L values
between —10 and 9 in steps of 1. For negative vorticities, the antivortices nucleate in a well defined sequence: they first progressively fill the
corners of the square in the region out of the dot and, once the corners have the same number of antivortices, the next one nucleates in the
center of the square and the cycle restarts. In contrast, for positive vorticities [panels (1)-(t)] all the vortices are located in the region below
the dot and they behave similarly to the case of an individual superconducting microdisk, i.e., they arrange themselves in a multishell
structure trying to form a triangular lattice.

vortex states that, subsequently, will be very sensitive to
small perturbations. Due to that, in these regions we have not
established well defined transition lines between vortex pat-
terns. As we will see in the next subsection, the origin of this
instability arises from the difficulty in constructing vortex
states with the corresponding vorticity values that comply
with the symmetry of the system.

B. Vortex patterns at low temperatures

As mentioned in the previous subsection, the usual incre-
ment of the vorticity by one, absent at the 7,.(H) boundary
due to the multiquanta vortex entries, is recovered deep in-
side the superconducting phase. To better illustrate this point,
in Figs. 4(a), 4(c), and 4(c)-4(t) we present the vortex patters
found at S/&(T)=200 in the magnetic-field region covered

by the phase diagram of Fig. 4(1) [the vortex pattern corre-
sponding to the phase U (L=10) at S/&(T)=200 is sepa-
rately shown in Fig. 5(d)]. The letters in the panels corre-
spond to the same phases defined in Fig. 4(1) so that they
cover vorticity values from —10 to 9 in steps of 1. For com-
pleteness, we also present in Fig. 4(2) the magnetic-field de-
pendence of the energy [in S/&(T) units] of the first three
Landau levels of each irrep involved in the expansion of the
order parameter. Apart from the recovery of the increment of
the vorticity by one, these vortex patterns also differ from
those observed at T,.(H) by the absence of giant vortex and
vortex-antivortex states, a confirmation that these configura-
tions are symmetry induced. However, the figure also illus-
trates that, as for the patterns at the boundary, the antivortices
are placed or at the center of the sample, or in the region
outside the dot [panels (A)—(J)] while the vortices always
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FIG. 5. (Color online) Evolution with decreasing temperature of
the vortex states at ¢p=6¢, (L=10). (a)—(e) are the vortex patterns
at §/&(T)=40, 120, 160, 200, and 550, respectively, and the tran-
sitions between these configurations happen at S/&(T)=105, 135,
195, and 470. (a) Close to the phase boundary the vortex pattern is
perfectly symmetric, with a giant 2 ¢, vortex at the center and eight
vortices in an outer shell arranged parallel to the edges of the
square. (b) With decreasing temperature the giant 2 ¢, vortex splits,
and all ten vortices, attracted by the peaks of the stray field of the
dot, form a single shell structure at the border of the ferromagnet.
Deeper in the superconducting phase the vortices progressively mi-
grate to the center of the sample giving rise to the two-shell con-
figurations in (c)—(e). As it can be seen, this process leads to a
progressive recovery of a (distorted) conventional triangular lattice.

arrange themselves just below the ferromagnet [panels (L)—
(D]

From Fig. 4 it is also possible to infer that the mechanism
for the nucleation of antivortices obeys the following rule:
starting at zero vorticity [panel (K)], the antivortices first
progressively fill the corners of the square [panels (J) with
L=-1, (I) with L=-2, (H) with L=-3, and (G) with L=—4].
Once each of the corners has an antivortex, the next one
nucleates at the center of the sample [panel (F) with L=-5],
and then, the sequence starts again. This mechanism, which
gives rise to nonsymmetric vortex states, governs the nucle-
ation of antivortices up to L=-15. In contrast, as shown in
panels (L)—(T), for positive L values the symmetry of the
order-parameter distribution is controlled by the cylindrical
geometry of the dot. As a consequence, the vortex patterns
behave similarly to those of an individual superconducting
disk, i.e., deep inside the superconducting phase the symmet-
ric states at the boundary split into individual vortices that
arrange themselves into a multishell structure trying to form
a conventional triangular lattice.>**° The crossover between
both regimes of nucleation of vortices and antivortices ap-
pears at, approximately, ¢=-8.5¢, [see Fig. 4(1)], in agree-
ment with the magnetic field that would compensate the av-
erage field of the dot in the superconductor. The latter can be
obtained by integrating the field profile shown in Fig. 1 over
the microsquare, which gives a result of ¢=10¢,.

In the previous subsection we have already pointed out
the existence in the phase diagram of two transition regions
(CDE and HIJ) where the vortex patterns are highly un-
stable. The origin of this instability may be understood by
first taking into account that, as discussed in Sec. II, in our
calculations the solution of the nonlinear GL functional is
constructed by linear combination of the first six Landau
levels of each irrep. Figure 4(2), where we present the field
dependence of the first three, illustrates that these energy
levels are closer to each other for magnetic fields in the field
regime where both transition regions appear (approximately
-20.25¢y= p=-12.50¢)) than in other ¢ regions (note, in
particular, the small energy differences between the first Lan-
dau levels of each irrep, and between these levels and the
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TABLE 1. Moduli of the complex coefficients in the order-
parameter expansion at points 3 [S/&(T)=160 and ¢=-19.90¢,]
and Q [S/&X(T)=160 and ¢p=—15¢,] in Fig. 4(1).

Point ()

Irrep A Irrep B Irrep E+ Irrep E—-
LLL 1791.25 0.01 0.24 0.17
First level 857.27 0.04 0.19 0.23
Second level 23.04 0.02 0.04 0.02
Third level 211.17 0.01 0.05 0.07
Fourth level 103.79 0.01 0.03 0.02
Fifth level 0.77 0.01 0.01 0.02

Point 3,

LLL 107.39 107.94 124.47 1526.78
First level 451.09 247.88 333.18 411.40
Second level 182.25 26.79 48.77 59.74
Third level 66.77 74.01 2791 42.93
Fourth level 32.68 13.84 79.05 159.83
Fifth level 93.14 13.10 17.84 89.39

lowest Landau levels of irreps E+ and B). These small dif-
ferences in energy between the functions involved in the ex-
pansion of the order parameter are a first indication of a
possible instability in this region. However, what actually
determines the final vortex pattern and its stability is the set
of temperature and field dependent complex coefficients of
the ¢ expansion that minimize the full GL functional at each
point of the phase diagram. To illustrate this, in Table I we
present the moduli of the complex coefficients obtained at
points 3 [S/&(T)=160 and ¢=-19.90¢,] and Q [S/E(T)
=160 and ¢p=-15¢y] of Fig. 4(1). As it can be seen, at point
3, only the levels corresponding to irrep A give a significant
contribution to the final solution. This means that there is no
admixture between different irreps and, thus, between differ-
ent symmetries,>*?> which leads to the symmetric pattern
with four antivortices in the corners shown in Fig. 4(g). Be-
sides, although Fig. 4(2) shows that the levels are close in
energy in this field region, the data in the table also indicate
that there exist large differences between the coefficients of
the functions significantly involved in the W expansion,
which results in a strengthening of the stability of the ob-
tained state. This admixture of energy levels of a single irrep
also occurs at all the points of phases G [Fig. 4(g), L=-4,
irrep A], F [Fig. 4(f), L=-5, irrep E-], K [Fig. 4(k), L=0,
irrep A], L [Fig. 4(1), L=1, irrep E+], and T [Fig. 4(t), L=9,
irrep E+], and it also leads to symmetric vortex patterns at
low temperatures in these regions. In fact, these vortex states
show almost no change with respect to the nucleated ones
with the same vorticity [see Fig. 3], indicating the strong
stability of these configurations with varying temperature.
The situation is different at point 3, where the LLL of
irrep E— admixes with excited levels of the other irreps. As
we know from the previous works in individual
microsuperconductors,??3 this combination between irreps
gives rise to nonsymmetric vortex states, as the one with L
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=-8 that corresponds to this point [Fig. 4(c)]. However, in
individual structures asymmetry arises from the combination
of no more than three energy levels.>*> In contrast, the data
in Table I show that the LLL of irrep E— has a significant
admixture with at least the first-excited levels of all irreps
with similar coefficients. Moreover, as shown in Fig. 4(2),
these energy levels also have a similar energy. As a conse-
quence, this vortex pattern will be very sensitive to small
perturbations such as tiny variations in the temperature and
the applied magnetic field. In fact, we have found that
around this point the order-parameter distribution immedi-
ately jumps from Fig. 4(c) to Fig. 4(b) and 4(d), or 4(e) with
small changes in ¢ and 7. A similar behavior can be ob-
served at all the points of the transition regions CDE and
HI1J. Consequently, we have not separated the vortex states
in these parts of the phase diagram.

C. Evolution of the vortex states

It is known from previous studies on individual mesos-
copic superconductors that in the superconducting phase the
nucleated order parameter may undergo four different types
of symmetry-breaking or symmetry-switching transitions:
second-order transitions with conservation of both symmetry
and vorticity, first-order symmetry-breaking transitions with
vorticity change, first-order symmetry-switching transitions
with vorticity change, and second-order symmetry-breaking
transitions with vorticity conservation.>*?> Apart from the
first one, which has only been observed in triangles due to
the coincidence of the geometry of the sample and the sym-
metry of the Abrikosov lattice,? these different types of tran-
sitions are also present in the phase diagram of the hybrid
S/ F structure studied here. For instance, the second one may
be found at low temperatures by changing the field. Then it is
possible to observe transitions between a symmetric state
and a nonsymmetric one with different vorticity, as the one
between phases G and H (see Fig. 4). The third type can be
observed if, for instance, we decrease the temperature from
T.(H) down to S/&(T)=100 at a magnetic field of ¢=
—18¢, [see Fig. 4]. Then the order parameter changes from
the nucleated one, given by Fig. 3(c), to the configuration
shown in Fig. 4(f), which corresponds to a transition between
two symmetric states with different vorticity. The last type
includes the splitting of the giant vortex state and the vortex-
antivortex annihilation.”*?* In Fig. 4(1) these processes cor-
respond to the transitions between phases AO [Fig. 3(a)] and
A [Fig. 4(a)] (giant vortex splitting for L=-10), Q0 [Fig.
3(h)] and Q [Fig. 4(q)] (giant vortex splitting for L=6), and
NO [Fig. 3(f)] and N [Fig. 4(n)] (vortex-antivortex annihila-
tion for L=3).

Figure 4(1) also shows that in this hybrid S/F nanostruc-
ture the evolution of the order parameter from the configu-
ration nucleated at T.(H) to the vortex pattern observed at
the lowest studied temperature may involve several phase
transitions, in particular for positive and relatively large vor-
ticity values (L=7) due to the appearance of the character-
istic multishell structure of a superconducting microdisk. For
instance, the vortex-antivortex annihilation for L=7 has an
intermediate phase (R1) between the nucleated order param-
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eter RO [Fig. 3(i)] and the final configuration R [Fig. 4(r)].
Even more complex is the sequence of transitions that the
nucleated giant vortex state corresponding to L=10 [phase
U0, Fig. 3(k)] undergoes with decreasing temperature. This
sequence is shown in Fig. 5, where we present the vortex
patterns that can be found at ¢=6¢, from the vicinity of the
phase boundary down to temperatures as low as S/&(T)
=550. Figure 5(a) has been obtained at S/ &*(T)=40 and cor-
responds to phase UQ. As this temperature is very close to
T.(H) [S/&(T)=22], the geometry of the sample still domi-
nates the spatial distribution of the order parameter, giving
rise to a well defined symmetric vortex pattern with a giant
vortex at the center surrounded by eight vortices parallel to
the edges of the square.

However, with decreasing temperature the confinement
effects become weaker, which results first in a second-order
phase transition associated with the splitting of the giant vor-
tex. The ten individual vortices are then attracted to the
edges of the magnetic dot by the large positive peaks of its
stray field, forming the vortex pattern shown in Fig. 5(b)
[phase U1 at S/&(T)=105]. Deeper in the superconducting
phase, we have found that the order parameter undergoes up
to three second-order phase transitions more, which corre-
spond to a gradual migration of vortices with lowering tem-
perature from the outer shell below the border of the dot to
the center of the sample. This process progressively gener-
ates vortex patterns with one [Fig. 5(c), calculated at
S/&(T)=120 and that corresponds to phase U2], two [Fig.
5(d), calculated at S/&(T)=200 and that corresponds to
phase U], and three [Fig. 5(¢), if we penetrate the supercon-
ducting phase down to temperatures as low as S/&(T)
=550] vortices in an inner shell surrounded by the remaining
vortices in an outer shell. Each transition leads to a vortex
pattern more triangular than the previous one, thus confirm-
ing the expected tendency to recover at low temperatures the
triangular Abrikosov lattice characteristic of bulk supercon-
ductors.

Besides, these results also illustrate that, at low tempera-
tures and relatively large L values, the geometry of the dot
induces in this hybrid nanostructure a behavior of the vortex
matter similar to that of an individual superconducting mi-
crodisk, where the configurations shown in Figs. 5(c)-5(e)
have been experimentally observed in Ref. 40. In that work,
however, these vortex patterns were found by repeating the
experiment several times at the same temperature and mag-
netic field, being Fig. 5(d) the state found more frequently. In
contrast, our calculations show that at a given temperature
only one stable structure should be observed. The metasta-
bility found experimentally can be attributed to the small
energy differences between these configurations, which can
be easily overcome by small experimental perturbations.

Another interesting aspect and quite counterintuitive of
the vortex matter in hybrid S/F nanostructures is the fact that
vortices can be generated with lowering temperature.’® This
is in clear contrast with the behavior found in individual
microsuperconductors, where only flux expulsion and the
subsequent decrease in the vorticity can be observed under a
temperature decrease.'>?*2 In Fig. 4(1), the lines corre-
sponding to transitions that involve this spontaneous vortex
generation have been labeled with 1 and they can be distin-
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guished by their slope, which opposes that of the lines asso-
ciated with conventional (flux-expulsive) transitions (i.e., it
is negative for L>0 and positive for L<<0). Besides, the
spontaneous generation of vortices can also be found in the
two transition regions CDE and HIJ although, as already
discussed, it is difficult to establish the lines that divide the
different vortex states in these regimes.

In Ref. 33 we have already discussed the spontaneous
generation of vortices at ¢=-12.8¢,, which falls in the re-
gion HIJ at low temperatures. In this case the nucleated or-
der parameter corresponds to a L=0 state but when the tem-
perature is decreased, four antivortices are simultaneously
generated at the corners of the square. Deeper in the super-
conducting phase these antivortices are expelled from the
sample one by one, giving rise to a sequence of transitions
L=0—-4—-3—-2——1 that leads to the recovery of the
last three vorticity values, which are absent at T,.(H). A simi-
lar behavior can be observed in the transition region CDE if
we decrease the temperature from the boundary down to
S/ &(T)=220 at p=—19¢,. The nucleated order parameter is
given by Fig. 3(b) (L=-5) but when the temperature is low-
ered below S/&(T)=90 four antivortices are spontaneously
created in the corners of the square, leading to a vortex pat-
tern with L=-9 as the one shown in Fig. 4(b). Then, further
decrease in temperature also leads to the recovery of vortic-
ity values absent at the boundary by the expulsion of an
antivortex at S/&(T)=160 [Fig. 4(c), L=-8] and at
S/&(T)=180 [Fig. 4(d), L=-7].

This series of transitions is associated with a sequence of
different admixtures between different energy levels: the
nucleated order parameter [Fig. 3(b)] is determined by the
LLL of irrep E—, and with decreasing temperature, it first
admixes with the first and fourth Landau levels of the same
irrep to create the vortex pattern with L=-9 given by Fig.
4(b). Deeper in the superconducting state this combination
starts to admix with the first-excited level of irrep A, and the
vortex states with L=-8 and —7 are progressively recovered
with the graduated increase with decreasing temperature of
the coefficient of this level in the order-parameter expansion.
Other transitions that involve the nucleation of vortices with
decreasing temperature can be observed in Fig. 4 beyond
those related with the instability regions. This is the case of
the shift from L=1 [phase L, Fig. 4(1)] to L=2 [phase M1 or
M, Fig. 4(m)] at magnetic fields around ¢p=-5.25¢,, which
has been already discussed in Ref. 33. Another example is
the transition between L=0 and L=1 that can be observed at
¢=-8.25¢,, and that corresponds to a symmetry switch be-
tween the lowest Landau levels of irreps A [Fig. 3(d) or 4(k)]
and E+ [Fig. 3(e) or 4(1)]. Similar switches between symmet-
ric states by a spontaneous generation of vortices can be
observed between phases G and F at ¢=-17¢,, and be-
tween phases F and AQ at ¢p=-21¢,.

In previous works we have shown that in superconducting
nanostructures the transitions that the vortex states undergo
with decreasing temperature leave traces that can be mea-
sured in the differential magnetization, AM X S/A[S/&(T)],
thus opening a possibility to investigate the superconducting
phase of mesoscopic superconductors beyond the complex
vortex imaging techniques.”>* In Fig. 6 we present three
examples of the evolution with temperature at a constant
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FIG. 6. (Color online) Temperature dependence of the differen-
tial magnetization at ¢=6¢, (black line with open squares), ¢=
—19.9¢ (red line with full circles), and ¢p=-8.25¢, (blue line with
full triangles). The inset is a zoom of the dashed area where a jump
at S/ &(T) =105 can be observed. This effect is associated with the
transition from Fig. 5(a) to Fig. 5(b) while the other two peaks in
this curve correspond to the shifts between Figs. 5(b) and 5(c)
[S/&(T)=135] and between Figs. 5(c) and 5(d) [S/&(T)=190].
The peaks and jumps in the red curve are linked to the sequence of
transitions L=-5 [Fig. 3(b)] —-9 [Fig. 4(b)] —-8 [Fig. 4(c)] —
—7 [Fig. 4(d)] that can be observed at the corresponding magnetic
field. The blue curve presents a single peak linked to the spontane-
ous generation of a vortex in the transition between the L=0 [Fig.
3(d) or 4(k)] and L=1 [Fig. 3(e) or 4(l)] states found at ¢=
—-8.25¢y.

magnetic field of this observable, obtained by using M

=2ch JFxj for the averaged magnetization (here ¢ is the

speed of light and ; is the supercurrent). The black line with
open squares has been obtained at ¢=6¢, so that it corre-
sponds to the sequence of transitions between vortex states
presented in Fig. 5 for L=10. The inset shows a zoom of this
curve in the dashed area, where it presents a jump in the
differential magnetization at S/&(T)==105 associated with
the splitting of the giant vortex and the subsequent transition
between the configurations given by Figs. 5(a) and 5(b).
More pronounced peaks can be observed at S/&(T)=135
and S/ &(T) = 190, which correspond to the migration of vor-
tices from the outer shell to the center of the sample that
leads to the transitions between, respectively, Figs. 5(b) and
5(c), and Figs. 5(c) and 5(d).

The red line with full circles has been calculated for ¢=
—-19.9¢), and, as it can be seen, it shows jumps at S/&*(T)
=90, 160, and 180. As discussed in the previous paragraph,
these are the temperatures at which the transitions of the
sequence L=-5 [Fig. 3(b)] —-9 [Fig. 4(b)] —-8 [Fig. 4(c)]
——7 [Fig. 4(d)] observed at this field occur. Finally, the blue
line with full triangles corresponds to the evolution with tem-
perature of the differential magnetization at ¢p=-8.25¢,. For
this magnetic field only a single peak at S/ & (T) =70 can be
observed, which is associated with the spontaneous genera-
tion of a vortex in the transition from L=0 to L=1 [i.e., from
Fig. 3(d) or 4(k) to Fig. 3(e) or 4(1)] commented above. Note
that, in an individual microsquare with a typical thickness of
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20 nm, the AM X S/A[S/&(T)] amplitude in Fig. 6 will lead
to magnetic moments of the order of 10™'5 A m?. Therefore,
these jumps and peaks in the differential magnetization could
be measured on arrays of 10° structures or so by using con-
ventional superconducting quantum interference device
(SQUID) magnetometers, which have a typical resolution of
the order of 10710 A m?.

V. CONCLUSIONS

To summarize, a magnetic dot on top of a microsquare
affects strongly the topology of the order-parameter distribu-
tion, giving rise to different effects for the vortex matter in
hybrid S/F nanosystems. At the normal-superconducting
transition, the compensation between the stray field of the
dot and a homogeneous external field leads to an asymmetric
T.(H) boundary with long-period oscillations. The latter are
associated with the appearance in the superconductor of a
well developed superconducting disk area in the region be-
low the magnet, which is surrounded by four corners with a
lower Cooper pair density. These two parts of the sample
have independent mechanisms for the vortex nucleation (a
simultaneous nucleation of 4n vortices in the corners and a
vorticity increase of one by one in the center) that may give
raise to multiquanta vortex entries along the T.(H) curve.
This center- or ring-nucleation regime is in contrast with the
conventional edge-nucleation regime found in individual mi-
crosuperconductors, which can be also observed in this hy-
brid nanostructure at high applied magnetic fields, where the
stray field of the dot can be considered as a weak perturba-
tion. At intermediate fields the nucleation of superconductiv-
ity in the system is a combination of both mechanisms that
we have identified as a complex edge-nucleation regime.

As in individual superconductors, in this hybrid system
the nucleated order parameter undergoes symmetry-breaking
and symmetry-switching transitions when the temperature is
lowered well below the phase boundary that can be experi-
mentally studied, either by local vortex imaging techniques
or by the measurable traces they leave in the differential
magnetization. However, this evolution with temperature of
the vortex patterns also presents significant differences with
the behavior observed in individual microstructures. In par-
ticular, the vorticity values absent at the boundary due to the
multiquanta vortex entries are recovered deep in the super-
conducting phase, a process that in some cases may involve
the spontaneous generation of vortices with decreasing tem-
perature. The field of the dot also leads to distortions of the
energy levels of the system. Their admixture governs the
transitions between the different configurations of the order
parameter. This results in the appearance in some regions of
the phase diagram of unstable and highly nonsymmetric vor-
tex states that will be very sensitive to weak perturbations.

The geometry of the dot also controls the vortex matter of
the hybrid structure at relatively large and positive L values.
In this regime the flux lines are confined in the region below
the magnet, where they behave similarly to the case of a
superconducting microdisk, i.e., they arrange themselves in a
multishell structure trying to form a distorted triangular lat-
tice.
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Other aspects of the confinement effects in hybrid S/F
nanosystems, as the influence of generalized boundary con-
ditions, proximity effects, and different geometries, and
types of magnetic dots deserve further studies. Of particular
interest could be the case of mesoscopic superconducting
structures with attached Permalloy dots, in which magnetiza-
tion is perpendicular at the center but it progressively curls
around this axis when moving toward the edge of the disk.*!
This effect is tunable by the external field, and it has been
already used to design a linear magnetic-flux amplifier for
SQUID applications consisting of a superconducting loop
enclosing a Permalloy dot.** Besides, it has been recently
reported that an enhancement of the vortex pinning in super-
conducting films with Permalloy dot arrays takes place,
which has been attributed to a strong local suppression of the
superconductivity by the large out-of-plane component of the
stray magnetic fields generated by the Permalloy disks.*? In
view of this last result, a stronger confinement of the vortices
in the region below the dot (or expulsion of the antivortices
to the region outside) could be expected in mesoscopic su-
perconductors with Permalloy disks.
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APPENDIX: GAUGE TRANSFORMATION OF VECTOR
POTENTIALS WITH RADIAL SYMMETRY FOR
REGULAR POLYGONS

Let us consider the case of a regular polygon with N
edges under a magnetic field which, corresponding to vector
potential, has radial symmetry so that A(r)=A(r)¢. At the
edge of the polygon, this vector potential has a normal com-
ponent to the boundary given by (see Refs. 15 and 36)

a
A,,:A( )sin @,
2 cos ¢

where ¢ is the polar angle and a=2r cos ¢ is the diameter of
the circumference inscribed in the polygon. To obtain a vec-
tor potential tangential to the edges, this normal component
has to be suppressed. With that purpose, the following gauge
transformation is introduced:

(A1)

A'=A+VS, (A2)

where A’ is the new vector potential and S is an arbitrary
scalar function that has to be found from the condition A)
=0. Alternatively, this constrain may be written as
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A,=-V,8S, (A3)

which has to be fulfilled at each edge of the polygon. Be-
sides, the rotational symmetry of the polygon has to be kept
in A’. Subsequently, S should be a periodic function on ¢
with period a=2m/N. As discussed in Refs. 15 and 36, the
simplest possible choice for S verifying these conditions is

Sn(r, @) = Ry(r)sin(Ne), (A4)

The substitution of Egs. (Al) and (A4) into Eq. (A3),
after eliminating the r variable by using

2
r= R
2 cos ¢
9 2cos’ @
Lot (AS)
Jdr a sin @ Jdo
leads to
Ri(@) + E@)Ry(9) = 7o), (A6)

where the prime means the first derivative with respect to ¢
and the following notation has been introduced:

EN(QD) = RN( 2 cos (P) s

&@) =— N cot(Ne)tan® ¢,

a )acsc(N@)tan2 cp. (A7)

7(¢) =A<2 cos @

2 cos ¢
The general solution of differential Eq. (A6) is given by

Ry(g) = LU @) u(e)de + C1:| ,
w()

w(e) =eXp{ J E(qo)d@}, (A8)

where C; is a constant to be chosen so that it does not gen-
erate divergent components in both A’ and V-A’ (note that
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the transformed vector potential does not obey the Coulomb
gauge, V-A’=0). Both conditions are fulfilled with the sim-
plest choice C;=0.'33 Then, by using the transformation
al2 cos ¢—r and Egs. (A2), (A6), and (A7), the polar co-
ordinates of the vector potential can be obtained as

aRN(”) .

A sin(Neg),

,_
g ar

N
A, =A(r) + —Ry(r)cos(Ng). (A9)
r
In the case of a square under a homogeneous applied
magnetic field, A=%H>< r, the transformed vector potential
can be analytically calculated from the above equations; the
results being!3°

1
Al =——=Ha(l +7)*?
4\5

X[=1+z+(1+2z-2)eEi(z)]sin(4¢),

1 1
Al =—Hr+ i EHa(l +2)[1 = ze Ei(z) Jcos(4¢),
N

90:2

z=2(rla)* -1, (A10)

where Ei(z) is the exponential integral function. However,
for the square with a magnetic disk on top, the complexity of
the vector potential associated to the stray field of the dot
makes difficult to solve, even numerically, the integrations
required to calculate Ry. To avoid this problem, we have
approached the field of the dot by using rational functions.
Indeed, there are infinite possible choices but we have found
that a sum of three rational functions (two of them con-
structed as a five degree polynomial in the denominator and
a six degree polynomial in the denominator, and the other
one as a polynomial of degree one divided by a polynomial
of degree two) gives an accuracy better than 0.01% for the
approximated field of the dot.
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